Jump to main content
Jump to site search

Issue 36, 2018
Previous Article Next Article

Strain-induced suppression of the miscibility gap in nanostructured Mg2Si–Mg2Sn solid solutions

Author affiliations

Abstract

Solid solutions of Mg2Si and Mg2Sn are promising thermoelectric materials owing to their high thermoelectric figures-of-merit and non-toxicity, but they may undergo phase separation under thermal cycling due to the presence of miscibility gaps, implying that the thermoelectric properties could be significantly degraded during thermoelectric device operation. Herein, this study investigates the strain-induced suppression of the miscibility gap in solid solutions of Mg2Si and Mg2Sn. Separately prepared Mg2Si and Mg2Sn powders were made into (Mg2Si)0.7(Mg2Sn)0.3 mixtures using a high energy ball-milling method followed by spark plasma sintering. Afterwards, the phase evolution of the mixtures, depending on thermal annealing and mixing conditions, was studied experimentally and theoretically. Transmission electron microscopy and X-ray diffraction results show that, despite the presence of a miscibility gap in the pseudo-binary phase diagram, the initial mixture of Mg2Si and Mg2Sn evolved towards a solid solution state after annealing for 3 hours at 720 °C. Thermodynamic analysis as well as phase-field microstructure simulations show that the strain energy due to the coherent spinodal effect suppresses the chemical spinodal entirely and prevents phase separation. This strategy to suppress the miscibility gap induced by lattice strain through non-equilibrium processing can benefit the thermoelectric figure-of-merit by maximizing phonon alloy scattering. Furthermore, stable solid solutions by engineering phase diagrams have the potential to facilitate the reliable long term operation of thermoelectric generators under continuous thermal loads.

Graphical abstract: Strain-induced suppression of the miscibility gap in nanostructured Mg2Si–Mg2Sn solid solutions

Back to tab navigation

Article information


Submitted
18 Jun 2018
Accepted
17 Aug 2018
First published
20 Aug 2018

J. Mater. Chem. A, 2018,6, 17559-17570
Article type
Paper
Author version available

Strain-induced suppression of the miscibility gap in nanostructured Mg2Si–Mg2Sn solid solutions

S. Yi, V. Attari, M. Jeong, J. Jian, S. Xue, H. Wang, R. Arroyave and C. Yu, J. Mater. Chem. A, 2018, 6, 17559 DOI: 10.1039/C8TA05798B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements