Issue 2, 2018

Aqueous dispersions of lipid nanoparticles wet hydrophobic and superhydrophobic surfaces

Abstract

Efficient delivery of aqueous sprays to hydrophobic surfaces is the key technological challenge in a wide variety of applications, including pesticide delivery to plants. To account for losses due to bouncing of pesticide sprays off hydrophobic leaf surfaces, a large excess of pesticide is typically employed, resulting in environmentally hazardous run-offs that contaminate soil and ground water. We demonstrate that aqueous dispersions of glycerol monooleate nanoparticles, called cubosomes, wet hydrophobic and superhydrophobic surfaces and adhere to them. Cubosomes comprise glycerol monooleate lipid molecules self-assembled into a double diamond cubic phase, that form stable aqueous dispersions that are sterically stabilized using amphiphilic block copolymers. We use high speed imaging to monitor the spreading and retraction of aqueous drops impinged on model hydrophobic substrates and on superhydrophobic lotus leaves. We show that cubosomes diffuse to hydrophobic substrates and reorganize to form a thin, ≈2 nm adsorbed lipid layer during the millisecond time scales that characterize drop impact. This adsorbed film drastically reduces the water contact angle, transforming the hydrophobic surface to hydrophilic, thus facilitating retention of the aqueous drop on the surface. Aqueous drops of cubosomes impinged at low velocities on inclined natural superhydrophobic lotus leaf surfaces do not roll off, unlike drops of water or surfactant solutions. When sprayed on inclined lotus leaves, corresponding to the case of high velocity drop impingement, cubosome dispersions form a continuous wetting film. Our results have important implications for efficient, environment-friendly delivery of pesticide sprays.

Graphical abstract: Aqueous dispersions of lipid nanoparticles wet hydrophobic and superhydrophobic surfaces

Supplementary files

Article information

Article type
Paper
Submitted
08 Sep 2017
Accepted
04 Dec 2017
First published
04 Dec 2017

Soft Matter, 2018,14, 205-215

Aqueous dispersions of lipid nanoparticles wet hydrophobic and superhydrophobic surfaces

M. Kumar, M. A. Kulkarni, N. G. Chembu, A. Banpurkar and G. Kumaraswamy, Soft Matter, 2018, 14, 205 DOI: 10.1039/C7SM01817G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements