Jump to main content
Jump to site search

Issue 64, 2018, Issue in Progress
Previous Article Next Article

Highly stretchable polymer-dispersed liquid crystal-based smart windows with transparent and stretchable hybrid electrodes

Author affiliations

Abstract

We report on highly stretchable polymer dispersed liquid crystal (PDLC)-based smart windows using Ag nanowires (NWs) and conductive PEDOT:PSS hybrid electrodes. By bar coating a Ag NW and PEDOT:PSS mixed ink on a transparent and stretchable polyurethane (PU) substrate, we fabricated highly transparent and stretchable hybrid electrodes with a sheet resistance of 40 ohm per square, an optical transmittance of 82%, and a stretchability of 30% to replace conventional brittle ITO electrode. Bending and stretching tests demonstrated that the mechanical properties of the Ag NW and PEDOT:PSS hybrid electrode were better than those of the ITO/PU sample. The Ag NW/PEDOT:PSS hybrid film was employed as a transparent and stretchable electrode (TSE) in PDLC-based stretchable smart windows, an application that is impossible for brittle ITO-based smart windows. The stretchable PDLC-based smart windows exhibited an on-state transmittance of 56% at an applied voltage of 80 V and an off-state transmittance of 2% at 0 voltage. Unlike an ITO-based PDLC smart window, which is easily broken by stretching, the Ag NW/PEDOT:PSS hybrid electrode-based PDLC smart window was stretched up to 30%. Successful operation of the stretchable PDLC-based smart window indicates that Ag NW/PEDOT:PSS hybrid films are promising TSEs for cost-effective, large area, and stretchable smart windows.

Graphical abstract: Highly stretchable polymer-dispersed liquid crystal-based smart windows with transparent and stretchable hybrid electrodes

Back to tab navigation

Article information


Submitted
22 Aug 2018
Accepted
24 Oct 2018
First published
30 Oct 2018

This article is Open Access

RSC Adv., 2018,8, 36549-36557
Article type
Paper

Highly stretchable polymer-dispersed liquid crystal-based smart windows with transparent and stretchable hybrid electrodes

J. Park and H. Kim, RSC Adv., 2018, 8, 36549
DOI: 10.1039/C8RA07033D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements