Jump to main content
Jump to site search

Issue 55, 2018, Issue in Progress
Previous Article Next Article

Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose

Author affiliations

Abstract

We demonstrate a flexible and light-weight supercapacitor based on bacterial nanocellulose (BNC) incorporated with tin oxide (SnO2) nanoparticles, graphene oxide (GO) and poly(3,4-ethylenedioxyiophene)-poly(styrenesulfonate) (PEDOT:PSS). The SnO2 and GO flakes are introduced into the fibrous nanocellulose matrix during bacteria-mediated synthesis. The flexible PEDOT:PSS/SnO2/rGO/BNC electrodes exhibited excellent electrochemical performance with a capacitance of 445 F g−1 at 2 A g−1 and outstanding cycling stability with 84.1% capacitance retention over 2500 charge/discharge cycles. The flexible solid-state supercapacitors fabricated using PEDOT:PSS/SnO2/rGO/BNC electrodes and poly(vinyl alcohol) (PVA)-H2SO4 coated BNC as a separator exhibited excellent energy storage performance. The fabrication method demonstrated here is highly scalable and opens up new opportunities for the fabrication of flexible cellulose-based energy storage devices.

Graphical abstract: Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose

Back to tab navigation

Supplementary files

Publication details

The article was received on 20 Jun 2018, accepted on 23 Aug 2018 and first published on 05 Sep 2018


Article type: Paper
DOI: 10.1039/C8RA05270K
RSC Adv., 2018,8, 31296-31302
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Flexible solid-state supercapacitor based on tin oxide/reduced graphene oxide/bacterial nanocellulose

    K. Liu, Q. Jiang, C. Kacica, H. G. Derami, P. Biswas and S. Singamaneni, RSC Adv., 2018, 8, 31296
    DOI: 10.1039/C8RA05270K

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements