Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 48, 2018, Issue in Progress
Previous Article Next Article

Morpho butterfly-inspired optical diffraction, diffusion, and bio-chemical sensing

Author affiliations

Abstract

Morpho-butterfly is well-known for the blue colouration in its tiny wing scales and finds applications in colour filters, anti-reflecting coatings and optical devices. Herein, the structural optical properties of the Morpho peleides-butterfly wing scales were examined through light reflection, diffraction and optical diffusion. The light diffraction property from wing scales was investigated through experiments and computation modelling. Broadband reflection variation was observed from different parts of the dorsal wings at broadband light illumination due to tiny structural variations, as verified by electronic microscopic images. The periodic nanostructures showed well-defined first-order diffraction through monochromatic (red, green and blue) and broadband light at normal illumination. Polyvinyl alcohol (PVA) embedded with Morpho peleides-butterfly wing scales acts as an optical diffuser to produce soft light. Light diffraction and diffusion properties were measured by angle-resolve experiments, followed by computational modelling. The maximum optical diffusion property at ∼185° from the wing scales was observed using broadband light at normal illumination. Finally, Morpho peleides-butterfly based submicron nanostructures were utilized to demonstrate bio-inspired chemical sensing.

Graphical abstract: Morpho butterfly-inspired optical diffraction, diffusion, and bio-chemical sensing

Back to tab navigation

Supplementary files

Article information


Submitted
23 May 2018
Accepted
17 Jul 2018
First published
30 Jul 2018

This article is Open Access

RSC Adv., 2018,8, 27111-27118
Article type
Paper

Morpho butterfly-inspired optical diffraction, diffusion, and bio-chemical sensing

R. Ahmed, X. Ji, Raghied M. H. Atta, A. A. Rifat and H. Butt, RSC Adv., 2018, 8, 27111
DOI: 10.1039/C8RA04382E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements