Jump to main content
Jump to site search

Issue 33, 2018, Issue in Progress
Previous Article Next Article

MgTiO3:Mn4+ a multi-reading temperature nanoprobe

Author affiliations


MgTiO3 nanoparticles doped with Mn4+, with homogeneous size ranging about 63.1 ± 9.8 nm, were synthesized by a molten salt assisted sol gel method. These nanoparticles have been investigated as optical thermal sensors. The luminescence of tetravalent manganese ion in octahedral environment within the perovskite host presents drastic variations with temperature. Three different thermometry approaches have been proposed and characterized. Two luminescence intensity ratios are studied. Firstly between the two R-lines of Mn4+ emission at low temperature (−250 °C and −90 °C) with a maximal sensitivity of 0.9% °C−1, but also secondly between 2E → 4A2 (R-line) and the 4T24A2 transitions. This allows studying the temperature variation within a larger temperature range (−200 °C to 50 °C) with a sensitivity between 0.6% °C−1 and 1.2% °C−1 over this range. The last proposed method is the study of the lifetime variation versus temperature. The effective lifetime value corresponds to a combination of transitions from two excited energy levels of the tetravalent manganese (2E and 4T2) in thermal equilibrium toward the fundamental 4A2 state. Since the more energetic transition (4T24A2) is spin-allowed, contrary to the 2E → 4A2 one, the lifetime drastically decreases with the increase in temperature leading to an impressive high sensitivity value of 4.1% °C−1 at 4 °C and an exceptional temperature resolution of 0.025 °C. According to their optical features, MgTiO3:Mn4+ nanoparticles are indeed suitable candidates for the luminescence temperature probes at the nanoscale over several temperature ranges.

Graphical abstract: MgTiO3:Mn4+ a multi-reading temperature nanoprobe

Back to tab navigation

Supplementary files

Article information

21 Mar 2018
10 May 2018
First published
18 May 2018

This article is Open Access

RSC Adv., 2018,8, 18341-18346
Article type

MgTiO3:Mn4+ a multi-reading temperature nanoprobe

E. Glais, V. Đorđević, J. Papan, B. Viana and M. D. Dramićanin, RSC Adv., 2018, 8, 18341
DOI: 10.1039/C8RA02482K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Social activity

Search articles by author