Jump to main content
Jump to site search

Issue 12, 2018
Previous Article Next Article

A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction

Author affiliations

Abstract

We fabricated a multidimensional heterostructured In2S3–CuInS2 photocatalyst to convert CO2 to CO. The hybrid photocatalyst can be obtained by using an In-containing MOF as a precursor followed by sulfidation and ion exchange. Moreover, the multidimensional structure, a 2D nanosheet semiconductor distributed on 1D hollow nanotubes, inhibits the recombination of charge carriers, increases CO2 adsorption and affords a large surface area promoting exposure of plentiful active sites. As a result, the as-synthesized optimal heterostructured In2S3–CuInS2 display a excellent activity with the CO evolution rate of 19.00 μmol g−1 h−1 over the under visible light irradiation, which is roughly four times higher than that of pristine In2S3. This work might pave the way for increasing the performance of metal sulphide photocatalysts by MOF-guided chemistry.

Graphical abstract: A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction

Back to tab navigation

Supplementary files

Article information


Submitted
30 Aug 2018
Accepted
19 Oct 2018
First published
22 Oct 2018

Inorg. Chem. Front., 2018,5, 3163-3169
Article type
Research Article

A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction

J. Yang, X. Zhu, Z. Mo, J. Yi, J. Yan, J. Deng, Y. Xu, Y. She, J. Qian, H. Xu and H. Li, Inorg. Chem. Front., 2018, 5, 3163
DOI: 10.1039/C8QI00924D

Social activity

Search articles by author

Spotlight

Advertisements