Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 11, 2018
Previous Article Next Article

Cyclopeptidic photosensitizer prodrugs as proteolytically triggered drug delivery systems of pheophorbide A: part I – self-quenched prodrugs

Author affiliations

Abstract

Herein, we report the synthesis of a new prodrug system consisting of regioselectively addressable functionalized templates bearing multiple pheophorbide A moieties for use in photodynamic therapy. These coupling reactions were achieved using copper-free “click” chemistry, namely a strain-promoted azide–alkyne cycloaddition. This new design was used to obtain well-defined quenched photosensitizer prodrugs with perfect knowledge of the number and position of loaded photosensitizers, providing structures bearing up to six photosentitizers and two PEG chains. These conjugates are ideally quenched in their native state regarding their fluorescence emission (up to 155 ± 28 times less fluorescent for an hexasubstituted conjugate than a monosubstituted non-quenched reference compound) or singlet oxygen production (decreased 8.7-fold in the best case) when excited. After 2 h of proteolytic activation, the fluorescence emission of a tetrasubstituted conjugate was increased 17-fold compared with the initial fluorescence emission.

Graphical abstract: Cyclopeptidic photosensitizer prodrugs as proteolytically triggered drug delivery systems of pheophorbide A: part I – self-quenched prodrugs

Back to tab navigation

Associated articles

Supplementary files

Article information


Submitted
16 Jul 2018
Accepted
28 Aug 2018
First published
30 Aug 2018

Photochem. Photobiol. Sci., 2018,17, 1728-1738
Article type
Paper

Cyclopeptidic photosensitizer prodrugs as proteolytically triggered drug delivery systems of pheophorbide A: part I – self-quenched prodrugs

J. Bouilloux, O. Yuschenko, B. Dereka, G. Boso, H. Zbinden, E. Vauthey, A. Babič and N. Lange, Photochem. Photobiol. Sci., 2018, 17, 1728
DOI: 10.1039/C8PP00317C

Social activity

Search articles by author

Spotlight

Advertisements