Issue 39, 2018

Parallel profiling of cancer cells and proteins using a graphene oxide functionalized ac-EHD SERS immunoassay

Abstract

Circulating biomarkers have emerged as promising non-invasive, real-time surrogates for cancer diagnosis, prognosis and monitoring of the therapeutic response. Current bio-sensing techniques mostly involve detection of either circulating cells or proteins which are inadequate in unfolding complex pathologic transformations. Herein, we report parallel detection of cellular and molecular markers (protein) for cancer using a multiplex platform featuring (i) graphene oxide (GO) functionalization that increases the active surface area and more importantly reduces the functionalization steps for rapid detection, (ii) alternating-current electrohydrodynamic (ac-EHD) fluid flow that provides delicate micro-mixing to enhance target–sensor interactions thereby minimizing non-specific binding and (iii) surface enhanced Raman scattering (SERS) for multiplex detection. We find that our platform possesses high sensitivity for detecting both proteins and cells. More importantly, this platform not only detects the cancer cells but also can simultaneously monitor the heterogeneous expression of cell surface proteins which could be clinically useful to determine effective patient therapy. We demonstrate the specific and sensitive detection of breast cancer cells from a mixture of non-target cells and report the heterogeneous expression of human epidermal growth factor receptor 2 (HER2) proteins on the individual cancer cell surface. Concurrently, we detect as low as 100 fg mL−1 HER2 and Mucin 16 proteins spiked in blood serum.

Graphical abstract: Parallel profiling of cancer cells and proteins using a graphene oxide functionalized ac-EHD SERS immunoassay

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2018
Accepted
07 Aug 2018
First published
08 Aug 2018

Nanoscale, 2018,10, 18482-18491

Parallel profiling of cancer cells and proteins using a graphene oxide functionalized ac-EHD SERS immunoassay

K. K. Reza, S. Dey, A. Wuethrich, A. A. I. Sina, D. Korbie, Y. Wang and M. Trau, Nanoscale, 2018, 10, 18482 DOI: 10.1039/C8NR02886A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements