Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2018
Previous Article Next Article

Charge transport in a single molecule transistor probed by scanning tunneling microscopy

Author affiliations

Abstract

We report on the scanning tunneling microscopy/spectroscopy (STM/STS) study of cobalt phthalocyanine (CoPc) molecules deposited onto a back-gated graphene device. We observe a clear gate voltage (Vg) dependence of the energy position of the features originating from the molecular states. Based on the analysis of the energy shifts of the molecular features upon tuning Vg, we are able to determine the nature of the electronic states that lead to a gapped differential conductance. Our measurements show that capacitive couplings of comparable strengths exist between the CoPc molecule and the STM tip as well as between CoPc and graphene, thus facilitating electronic transport involving only unoccupied molecular states for both tunneling bias polarities. These findings provide novel information on the interaction between graphene and organic molecules and are of importance for further studies, which envisage the realization of single molecule transistors with non-metallic electrodes.

Graphical abstract: Charge transport in a single molecule transistor probed by scanning tunneling microscopy

Back to tab navigation

Supplementary files

Article information


Submitted
14 Sep 2017
Accepted
13 Dec 2017
First published
05 Jan 2018

Nanoscale, 2018,10, 1487-1493
Article type
Paper

Charge transport in a single molecule transistor probed by scanning tunneling microscopy

S. Bouvron, R. Maurand, A. Graf, P. Erler, L. Gragnaniello, M. Skripnik, D. Wiedmann, C. Engesser, C. Nef, W. Fu, C. Schönenberger, F. Pauly and M. Fonin, Nanoscale, 2018, 10, 1487
DOI: 10.1039/C7NR06860C

Social activity

Search articles by author

Spotlight

Advertisements