Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 40, 2018

Luminescent copper(i) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands

Author affiliations

Abstract

Heteroleptic [Cu(P^P)(N^N)][PF6] complexes, where N^N is a halo-substituted 2,2′-bipyridine (bpy) and P^P is either bis(2-(diphenylphosphino)phenyl)ether (POP) or 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos) have been synthesized and investigated. To stabilize the tetrahedral geometry of the copper(I) complexes, the steric demands of the bpy ligands have been increased by introducing 6- or 6,6′-halo-substituents in 6,6′-dichloro-2,2′-bipyridine (6,6′-Cl2bpy), 6-bromo-2,2′-bipyridine (6-Brbpy) and 6,6′-dibromo-2,2′-bipyridine (6,6′-Br2bpy). The solid-state structures of [Cu(POP)(6,6′-Cl2bpy)][PF6], [Cu(xantphos)(6,6′-Cl2bpy)][PF6]·CH2Cl2, [Cu(POP)(6-Brbpy)][PF6] and [Cu(xantphos)(6-Brbpy)][PF6]·0.7Et2O obtained from single crystal X-ray diffraction are described including the pressure dependence of the structure of [Cu(POP)(6-Brbpy)][PF6]. The copper(I) complexes with either POP or xantphos and 6,6′-Cl2bpy, 6-Brbpy and 6,6′-Br2bpy are orange-to-red emitters in solution and yellow-to-orange emitters in the solid state, and their electrochemical and photophysical properties have been evaluated with the help of density functional theory (DFT) calculations. The emission properties are strongly influenced by the substitution pattern that largely affects the geometry of the emitting triplet state. [Cu(POP)(6,6′-Cl2bpy)][PF6] and [Cu(xantphos)(6,6′-Cl2bpy)][PF6] show photoluminescence quantum yields of 15 and 17%, respectively, in the solid state, and these compounds were tested as luminophores in light-emitting electrochemical cells (LECs). The devices exhibit orange electroluminescence and very short turn-on times (<5 to 12 s). Maximum luminance values of 121 and 259 cd m−2 for [Cu(POP)(6,6′-Cl2bpy)][PF6] and [Cu(xantphos)(6,6′-Cl2bpy)][PF6], respectively, were achieved at an average current density of 100 A m−2. External quantum efficiencies of 1.2% were recorded for both complexes.

Graphical abstract: Luminescent copper(i) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands

Supplementary files

Article information


Submitted
06 Apr 2018
Accepted
16 May 2018
First published
17 May 2018

Dalton Trans., 2018,47, 14263-14276
Article type
Paper

Luminescent copper(I) complexes with bisphosphane and halogen-substituted 2,2′-bipyridine ligands

S. Keller, A. Prescimone, H. Bolink, M. Sessolo, G. Longo, L. Martínez-Sarti, J. M. Junquera-Hernández, E. C. Constable, E. Ortí and C. E. Housecroft, Dalton Trans., 2018, 47, 14263 DOI: 10.1039/C8DT01338A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements