Issue 28, 2018

Highly negative Poisson's ratio in a flexible two-dimensional tungsten carbide monolayer

Abstract

Auxetic materials have numerous promising engineering applications such as fracture resistance and energy storage due to their negative Poisson's ratios (NPRs). However, compared to materials possessing positive Poisson's ratios (PPRs), auxetic materials are rare. In this paper, by employing first principles calculations, we found a high NPR two-dimensional (2D) material, tungsten carbide (W2C), in the transition metal carbides (MXenes). Our results of the relatively moderate Young's modulus and fracture strength as well as the critical strain showed that the 2D monolayer W2C is an extraordinary flexible material. Our DFT results also demonstrated that W2C possesses high NPRs while Hf2C and Ta2C have PPRs. Furthermore, the mechanically induced deformation mechanism and the NPR formation mechanism of W2C have been proposed. Such an intrinsic NPR in W2C is attributed to the strong coupling between the C-p and W-d orbitals in the pyramid structural unit. The mechanically induced deformation mechanism and the PPR formation mechanism of Hf2C have also been determined. The intrinsic NPR for W2C transforms to PPR upon the surface functionalization induced. The behavior occurs due to the W–C interaction weakening. The excellent NPR in the 2D MXene material combined with other outstanding properties such as the metallic state would bring about its promising engineering prospects, ranging from the metal-ion battery, to automobiles and aircraft.

Graphical abstract: Highly negative Poisson's ratio in a flexible two-dimensional tungsten carbide monolayer

Supplementary files

Article information

Article type
Paper
Submitted
01 Mar 2018
Accepted
09 Apr 2018
First published
09 Apr 2018

Phys. Chem. Chem. Phys., 2018,20, 18924-18930

Highly negative Poisson's ratio in a flexible two-dimensional tungsten carbide monolayer

D. Wu, S. Wang, S. Zhang, J. Yuan, B. Yang and H. Chen, Phys. Chem. Chem. Phys., 2018, 20, 18924 DOI: 10.1039/C8CP01353E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements