Issue 7, 2018

Importance of protein flexibility in molecular recognition: a case study on Type-I1/2 inhibitors of ALK

Abstract

Anaplastic lymphoma kinase (ALK) has been regarded as a promising target for the therapy of various cancers. A large number of ALK inhibitors with diverse scaffolds have been discovered, and most of them belong to Type-I inhibitors that only occupy the ATP-binding pocket. Recently, we reported a series of novel and potent Type-I1/2 inhibitors of ALK with the 1-purine-3-piperidinecarboxamide scaffold, which can bind to both the ATP-binding site of ALK and the adjacent hydrophobic allosteric pocket. In this study, the binding mechanisms of these Type-I1/2 ALK inhibitors were elucidated by multiple molecular modeling techniques. The calculation results demonstrate that the ensemble docking based on multiple protein structures and the MM/PB(GB)SA calculations based on molecular dynamics (MD) simulations yield better predictions than conventional rigid receptor docking (Glide, Surflex-Dock, and Autodock Vina), highlighting the importance of incorporating receptor flexibility in the predictions of binding poses and binding affinities of Type-I1/2 ALK inhibitors. Furthermore, the umbrella sampling (US) simulations and MM/GBSA binding free energy decomposition analyses indicate that Leu1122, Leu1198, Gly1202 and Glu1210 in the hinge region and Glu1197, Ile1171, Phe1174, Ile1179, His1247, Ile1268, Asp1270 and Phe1271 in the allosteric pocket of ALK are the key residues for determining the relative binding strength of the studied inhibitors. Besides, we found that the most potent inhibitor (001-017) tends to form stronger transient interactions with residues along the dissociation channel due to the high electronegativity of its bulky 4-(trifluoromethoxy) phenylamine tail. As a whole, both the stronger binding affinity and the higher energetic barrier (which may prolong the drug-target residence time) of 001-017 contribute to its excellent anti-proliferation activity against ALK-positive cancer cells.

Graphical abstract: Importance of protein flexibility in molecular recognition: a case study on Type-I1/2 inhibitors of ALK

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2017
Accepted
16 Jan 2018
First published
16 Jan 2018

Phys. Chem. Chem. Phys., 2018,20, 4851-4863

Importance of protein flexibility in molecular recognition: a case study on Type-I1/2 inhibitors of ALK

X. Kong, H. Sun, P. Pan, F. Zhu, S. Chang, L. Xu, Y. Li and T. Hou, Phys. Chem. Chem. Phys., 2018, 20, 4851 DOI: 10.1039/C7CP08241J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements