Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 27th March 2019 from 11:00 AM to 1:00 PM (GMT).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.

Issue 2, 2018
Previous Article Next Article

Core–shell Cu@rGO hybrids filled in epoxy composites with high thermal conduction

Author affiliations


Due to the increased power density of electronic devices, the heat originated from the core components increases the working temperature of the devices, enormously degrading their reliability and shortening their lifespan. So, effective heat dissipation from high-power electronic devices has become an urgent and complex problem. Herein, we report epoxy-based composites with an enhanced thermal conductivity by using reduced graphene oxide encapsulated copper sphere (Cu@rGO) hybrids as fillers. The Cu@rGO hybrid exhibits a 3D structure with high oxidation resistance. The obtained polymer composites exhibit a high thermal conductivity (7 W m−1 K−1), as the loading of the Cu@rGO hybrids is 80 wt%, which is 2.6 times higher than that of the polymer composites filled with only Cu spheres. The high thermal conductivity might be attributed to the synergistic effects between spherical Cu and rGO nano-sheets, which enhanced the oxidation resistance of copper and increased the thermal transfer path, along with the reduced interfacial thermal resistance between Cu and epoxy resins. In addition, the Cu@rGO/epoxy composites reveal a decreased thermal expansion coefficient (CTE), an increased glass transition temperature (Tg), and an enhanced shear strength. This unique 3D core–shell Cu@rGO structure and its epoxy composites with high thermal conductivity and dimensional stability could be suitable as excellent thermal interface materials in advanced electronic packaging techniques.

Graphical abstract: Core–shell Cu@rGO hybrids filled in epoxy composites with high thermal conduction

Back to tab navigation

Supplementary files

Publication details

The article was received on 28 Sep 2017, accepted on 04 Dec 2017 and first published on 04 Dec 2017

Article type: Paper
DOI: 10.1039/C7TC04427E
Citation: J. Mater. Chem. C, 2018,6, 257-265

  •   Request permissions

    Core–shell Cu@rGO hybrids filled in epoxy composites with high thermal conduction

    S. Liu, B. Zhao, L. Jiang, Y. Zhu, X. Fu, R. Sun, J. Xu and C. Wong, J. Mater. Chem. C, 2018, 6, 257
    DOI: 10.1039/C7TC04427E

Search articles by author