Issue 27, 2017

Size-controllable and stable organometallic halide perovskite quantum dots/polymer films

Abstract

Organometallic halide perovskite quantum dots (OHP-QDs) have attracted a great deal of attention because of their high photoluminescence quantum yields (PLQYs, up to 90%) and narrow-band colors. However, precise control of the OHP-QDs' size is difficult and they are unstable under ambient conditions, which limits their usage in applications such as lasers and displays. Herein, we introduce a novel method to prepare size-controllable and stable OHP (methylammonium lead trihalide, MAPbX3, where X = Cl, Br, and I)-QDs/polymer films using polydimethylsiloxane (PDMS) as a template. The MAPbX3 QDs/PDMS films developed in this work are self-standing, flexible, transparent, and retain the photophysical properties of OHP-QDs for at least several months. Moreover, the uniform size of the OHP-QDs results in narrow photoluminescence (PL) emission (full-width-at-half-maximum, FWHM ≈ 20 nm) compared to that of QDs synthesized by a conventional method (≈50 nm). The PL emission peak can be shifted by varying the size of the QDs and also by changing the halide component (Cl, Br, and I), covering a wide range of absorption wavelengths. Furthermore, the higher PL intensity of the larger QDs was confirmed by time-correlated single photon counting (TCSPC) experiments.

Graphical abstract: Size-controllable and stable organometallic halide perovskite quantum dots/polymer films

Supplementary files

Article information

Article type
Communication
Submitted
11 Apr 2017
Accepted
20 Jun 2017
First published
20 Jun 2017

J. Mater. Chem. C, 2017,5, 6667-6671

Size-controllable and stable organometallic halide perovskite quantum dots/polymer films

W. Cha, H. Kim, S. Lee and J. Kim, J. Mater. Chem. C, 2017, 5, 6667 DOI: 10.1039/C7TC01562C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements