Issue 15, 2017

Engineering dielectric constants in organic semiconductors

Abstract

The dielectric properties of three pairs of organic semiconductors that contain increasing numbers of cyclopentadithiophene-co-benzothiadiazole moieties (monomer, dimer and polymer) were studied and compared. The materials in each pair differed in the nature of the ‘solubilizing groups’, which are either alkyl- or glycol-based. At low frequencies (<MHz), dielectric constants of up to ∼9 were obtained for the glycolated materials. In addition, the optical- (high-) frequency dielectric constants for the glycolated dimer and polymer were 4.6 and 4.2 respectively, which are the highest values reported thus far for non-ionic organic semiconductors. The external and internal quantum efficiencies (EQE and IQE) of homojunction (i.e., single component) solar cells comprising the dimer and polymer glycolated materials both showed measurable improvements at wavelengths close to their optical gap when compared with the alkylated equivalents. The improvement is suggestive of an increase in the charge generation efficiency, potentially facilitated by the high optical-frequency dielectric constant.

Graphical abstract: Engineering dielectric constants in organic semiconductors

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2017
Accepted
16 Mar 2017
First published
30 Mar 2017

J. Mater. Chem. C, 2017,5, 3736-3747

Engineering dielectric constants in organic semiconductors

A. Armin, D. M. Stoltzfus, J. E. Donaghey, A. J. Clulow, R. C. R. Nagiri, P. L. Burn, I. R. Gentle and P. Meredith, J. Mater. Chem. C, 2017, 5, 3736 DOI: 10.1039/C7TC00893G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements