Issue 13, 2017

Enhanced near-UV electroluminescence from p-GaN/i-Al2O3/n-ZnO heterojunction LEDs by optimizing the insulator thickness and introducing surface plasmons of Ag nanowires

Abstract

p-GaN/i-Al2O3/n-ZnO (PIN) heterojunction LEDs with different dielectric Al2O3 thicknesses were fabricated via an atomic layer deposition technique. By optimizing the i-Al2O3 layer thickness to be ∼12 nm, the effective electron accumulation and hole injection are simultaneously achieved in the n-ZnO active layer, resulting in a greatly improved near-UV electroluminescence intensity of this PIN type LED. Moreover, by introducing Ag nanowires, whose surface plasmon (SP) resonant energy is closer to the ZnO UV emission energy, into the LED structure, the electroluminescence intensity was further increased ∼2.8 times. Time-resolved and temperature-dependent spectroscopy analyses reveal that both the spontaneous radiation rate and internal quantum efficiency of the ZnO active layer are increased as a result of resonant couplings between ZnO excitons and Ag nanowire SPs, which gives rise to the observed near-UV electroluminescence enhancement.

Graphical abstract: Enhanced near-UV electroluminescence from p-GaN/i-Al2O3/n-ZnO heterojunction LEDs by optimizing the insulator thickness and introducing surface plasmons of Ag nanowires

Article information

Article type
Paper
Submitted
25 Jan 2017
Accepted
02 Mar 2017
First published
02 Mar 2017

J. Mater. Chem. C, 2017,5, 3288-3295

Enhanced near-UV electroluminescence from p-GaN/i-Al2O3/n-ZnO heterojunction LEDs by optimizing the insulator thickness and introducing surface plasmons of Ag nanowires

L. Yang, W. Liu, H. Xu, J. Ma, C. Zhang, C. Liu, Z. Wang and Y. Liu, J. Mater. Chem. C, 2017, 5, 3288 DOI: 10.1039/C7TC00419B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements