Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 9, 2017
Previous Article Next Article

Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs)

Author affiliations

Abstract

New low band gap copolymers P1–P4, based on thienylenevinylene (TV) and pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) units composed of different alkyl side chains, such as 2-octyldodecyl (OD), n-hexadecyl (HD), 2-ethylhexyl (EH), and 9-heptadecyl (HD) groups, respectively, have been synthesized and characterized. Electrochemical and optical studies of the copolymers indicated low energy band gaps in the range of 1.40–1.47 eV. Moreover, theoretical calculation with density functional theory (DFT) and time-dependent DFT calculations demonstrated that the energy band gaps, HOMO energy levels and maximum absorption values in the copolymers were in good agreement with the experimental results. The decomposition temperature of all copolymers was measured to be above 340 °C by thermogravimetric analysis (TGA), which indicates high thermal stability. Thermally annealed OTFT devices based on P1–P4 thin films demonstrated a range of hole mobilities; thus, the P2 based OTFT device exhibited the highest hole mobility of 0.062 cm2 V−1 s−1.

Graphical abstract: Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs)

Back to tab navigation

Supplementary files

Article information


Submitted
02 Nov 2016
Accepted
05 Jan 2017
First published
06 Jan 2017

J. Mater. Chem. C, 2017,5, 2247-2258
Article type
Paper

Synthesis of low band gap polymers based on pyrrolo[3,2-d:4,5-d′]bisthiazole (PBTz) and thienylenevinylene (TV) for organic thin-film transistors (OTFTs)

D. Patra, J. Lee, J. Lee, D. N. Sredojevic, A. J. P. White, H. S. Bazzi, E. N. Brothers, M. Heeney, L. Fang, M. Yoon and M. Al-Hashimi, J. Mater. Chem. C, 2017, 5, 2247
DOI: 10.1039/C6TC04763G

Social activity

Search articles by author

Spotlight

Advertisements