Jump to main content
Jump to site search

Issue 38, 2017
Previous Article Next Article

Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality

Author affiliations

Abstract

We report a strong enhancement in the antimicrobial action of berberine encapsulated into polyacrylic acid-based nanogels followed by further surface functionalisation with a cationic polyelectrolyte (PDAC). Due to the highly developed surface area, the nanogel carrier amplifies the contact of berberine with microbial cells and increases its antimicrobial efficiency. We show that such cationic nanogel carriers of berberine can adhere directly to the cell membranes and maintain a very high concentration of berberine directly on the cell surface. We demonstrated that the antimicrobial action of the PDAC-coated nanogel loaded with berberine on E. coli and C. reinhardtii is much higher than that of the equivalent solution of free berberine due to the electrostatic adhesion between the positively charged nanogel particles and the cell membranes. Our results also showed a marked increase in their antimicrobial action at shorter incubation times compared to the non-coated nanogel particles loaded with berberine under the same conditions. We attribute this boost in the antimicrobial effect of these cationic nanocarriers to their accumulation on the cell membranes which sustains a high concentration of released berberine causing cell death within much shorter incubation times. This study can provide a blueprint for boosting the action of other cationic antimicrobial agents by encapsulating them into nanogel carriers functionalised with a cationic surface layer. This nanotechnology-based approach could lead to the development of more effective wound dressings, disinfecting agents, antimicrobial surfaces, and antiseptic and antialgal/antibiofouling formulations.

Graphical abstract: Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Aug 2017, accepted on 14 Sep 2017 and first published on 26 Sep 2017


Article type: Paper
DOI: 10.1039/C7TB02262J
Citation: J. Mater. Chem. B, 2017,5, 7885-7897
  •   Request permissions

    Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality

    M. J. Al-Awady, A. Fauchet, G. M. Greenway and V. N. Paunov, J. Mater. Chem. B, 2017, 5, 7885
    DOI: 10.1039/C7TB02262J

Search articles by author

Spotlight

Advertisements