Jump to main content
Jump to site search

Issue 23, 2017
Previous Article Next Article

Electrochemical deposition of dopamine–hyaluronic acid conjugates for anti-biofouling bioelectrodes

Author affiliations

Abstract

Bioelectrodes have been widely used to effectively mediate electrical signals with biological systems for various biomedical applications, such as biosensors and prosthetic probes. However, the electrical properties of bioelectrodes are frequently degraded in the biological milieu due to biofouling of bioelectrode surfaces. Hence, the development of simple and effective strategies for bioelectrode surface modification is important for the mitigation of biofouling. To this end, we electrochemically modify electrodes with dopamine-conjugated hyaluronic acid (DA–HA); the modified electrodes exhibit highly hydrophilic surfaces. In addition, the electrochemical impedance of the DA–HA-modified electrodes remains similar to those of bare electrodes. The DA–HA-modified electrodes showed reduced non-specific protein adsorption and minimal adhesion of fibroblasts. Our novel electrochemical passivation of electrodes using DA–HA will contribute to the further development of fouling-resistant and biocompatible bioelectrodes. The electrodeposition of DA–HA can also be potentially applied for general surface modification of other metallic and conducting materials for various applications.

Graphical abstract: Electrochemical deposition of dopamine–hyaluronic acid conjugates for anti-biofouling bioelectrodes

Back to tab navigation

Supplementary files

Article information


Submitted
04 Jan 2017
Accepted
07 Apr 2017
First published
11 Apr 2017

J. Mater. Chem. B, 2017,5, 4507-4513
Article type
Paper

Electrochemical deposition of dopamine–hyaluronic acid conjugates for anti-biofouling bioelectrodes

S. Kim, Y. Jang, L. K. Jang, S. H. Sunwoo, T. Kim, S. Cho and J. Y. Lee, J. Mater. Chem. B, 2017, 5, 4507
DOI: 10.1039/C7TB00028F

Social activity

Search articles by author

Spotlight

Advertisements