Issue 9, 2017

Synthesis and bactericidal properties of porphyrins immobilized in a polyacrylamide support: influence of metal complexation on photoactivity

Abstract

Spectroscopic and photodynamic properties of three novel polymeric hydrogels bearing porphyrins have been studied in vitro on the recombinant bioluminescent Gram-negative Escherichia coli DH5α to assess their ability to inactivate bacterial strains in solution. The three different hydrogels were formed by polymerization of 5-[4-2-(2-(2-acrylamidoethoxy)ethoxy)ethyl]carboxyphenyl-10,15,20-tris(4-N-methylpyridyl)porphyrin trichloride (5) and its complexes with Pd(II) (6) and Cu(II) (7) respectively, to form three optically transparent polyacrylamide hydrogels. All of the porphyrins are tricationic and they bear at the meso positions three N-methylpyridyl rings and one terminal acryloyl group connected through a flexible hydrophilic linker, particularly suitable for the later polymerization and incorporation into a hydrogel. The hydrogels were characterized by IR and scanning electron microscopy and incorporation of the dye was confirmed by UV-visible spectroscopy. All the hydrogels are characterized by a non-ordered microporous structure. The E. coli exhibited a decrease of 1.87 log after 25 min irradiation when the porphyrin hydrogel 9 was evaluated. When the Pd(II) and Cu(II)porphyrin hydrogels were tested (10, 11), they showed a 2.93 log decrease and 1.26 log decrease in the survival of the E. coli after 25 min irradiation, respectively. Similar results were obtained when the porphyrins were tested in solution. Of the three hydrogels, the Pd(II)porphyrin hydrogel (10) proved to be the one with the highest photokilling ability under illumination, and also exhibited the lowest toxicity in the absence of light. Hydrogels 9 and 10 were found to be active for five cycles, suggesting the possibility of reuse.

Graphical abstract: Synthesis and bactericidal properties of porphyrins immobilized in a polyacrylamide support: influence of metal complexation on photoactivity

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2016
Accepted
07 Feb 2017
First published
07 Feb 2017

J. Mater. Chem. B, 2017,5, 1834-1845

Synthesis and bactericidal properties of porphyrins immobilized in a polyacrylamide support: influence of metal complexation on photoactivity

C. Spagnul, L. C. Turner, F. Giuntini, J. Greenman and R. W. Boyle, J. Mater. Chem. B, 2017, 5, 1834 DOI: 10.1039/C6TB03198F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements