Issue 24, 2017

Naphthalene diimide-based small molecule acceptors for organic solar cells

Abstract

This work introduces six novel naphthalene diimide (NDI) molecular acceptors for evaluation in organic solar cells based on two different chemical architectures: a star-shaped structure with a triarylamine core flanked by three NDI moieties and a linear molecule composed of a bithiophene bridge between two NDI moieties. For each molecular structure, three different side chains are examined, with alkyl chains linked to the NDI core either through oxygen, sulfur, or nitrogen substituents. Both the chemical structure and the side-chain heteroatom substitution were found to influence the optoelectronic and photovoltaic properties of these molecular acceptors. Organic solar cells were fabricated with each acceptor, utilizing PBDTTT-EFT (also known as PTB7-Th) as the donor material in inverted bulk-heterojunction devices. Nitrogen was observed to lower the solar cell performance for these acceptors by significantly decreasing the short circuit current density (JSC), while sulfur increased the JSC and, in the star configuration, led to the highest power conversion efficiency (PCE) of 2.8% – which is amongst the highest for any molecular NDI-based acceptor to date. Grazing incidence wide-angle X-ray scattering (GIWAXS) measurements of the star-shaped materials showed the side-chain substitutional atom significantly alters the material's packing configuration in neat films, with films blended with PBDTTT-EFT showing features characteristic of the neat donor and acceptor materials, indicating that the small molecules do not disrupt the packing of PBDTTT-EFT (and vice versa). Resonant soft X-ray scattering (R-SoXS) measurements indicate the PBDTTT-EFT:star-shaped acceptor blends are not subject to coarse phase-separation, with the average domain size for all three star-shaped acceptor blends typically being less than 100 nm. This is confirmed by similar topography for blended films in AFM images amongst the three acceptors. Photoluminescence (PL) quenching measurements, however, found large differences in PL quenching efficiency which were attributed to differences in the driving force for charge transfer, with the nitrogen substituted compound showing the lowest PL quenching and the sulfur replacement showing the highest.

Graphical abstract: Naphthalene diimide-based small molecule acceptors for organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
30 Mar 2017
Accepted
19 May 2017
First published
20 May 2017

J. Mater. Chem. A, 2017,5, 12266-12277

Naphthalene diimide-based small molecule acceptors for organic solar cells

K. Rundel, S. Maniam, K. Deshmukh, E. Gann, S. K. K. Prasad, J. M. Hodgkiss, S. J. Langford and C. R. McNeill, J. Mater. Chem. A, 2017, 5, 12266 DOI: 10.1039/C7TA02749D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements