Issue 16, 2017

Metal–organic frameworks in seconds via selective microwave heating


Synthesis of metal–organic framework (MOF) materials via microwave heating often involves shorter reaction times and offers enhanced control of particle size compared to conventional heating. However, there is little understanding of the interactions between electromagnetic waves and MOFs, their reactants, and intermediates, all of which are required for successful scale-up to enable production of commercially viable quantities of material. By examining the effect of average absorbed power with a constant total absorbed energy to prepare MIL-53(Al) we have defined a selective heating mechanism that affords control over MOF particle size range and morphology by altering the microwave power. This is the first time a selective mechanism has been established for the preparation of MOFs via microwave heating. This approach has been applied to the very rapid preparation of MIL-53(Al)ta (62 mg in 4.3 seconds) which represents the fastest reported synthesis of a MOF on this scale to date.

Graphical abstract: Metal–organic frameworks in seconds via selective microwave heating

Supplementary files

Article information

Article type
17 Feb 2017
06 Mar 2017
First published
05 Apr 2017
This article is Open Access
Creative Commons BY license

J. Mater. Chem. A, 2017,5, 7333-7338

Metal–organic frameworks in seconds via selective microwave heating

A. Laybourn, J. Katrib, R. S. Ferrari-John, C. G. Morris, S. Yang, O. Udoudo, T. L. Easun, C. Dodds, N. R. Champness, S. W. Kingman and M. Schröder, J. Mater. Chem. A, 2017, 5, 7333 DOI: 10.1039/C7TA01493G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity