Issue 14, 2017

A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors

Abstract

A single elemental hybrid composed of black phosphorus (BP) and red phosphorus (RP) is synthesized via a feasible sonochemical method. BP and RP can construct a new single elemental heterostructure. This kind of structure with an excellent interfacial contact between BP and RP would be beneficial to electron transfer and exhibits a superior electrochemical performance. Compared with the sole RP, the as-prepared BP/RP hybrid exhibits enhanced electrochemical performances as an electrode material for both lithium-ion batteries and supercapacitors. For lithium-ion battery applications, the BP/RP hybrid provides a high cycling performance with an initial discharge capacity of 2449 mA h g−1 and a reversible capacity of 491 mA h g−1 after 100 cycles. For supercapacitor applications, the specific capacitance of the BP/RP hybrid achieves a high value up to about 60.1 F g−1 and a long cycling life with a capacity retention of 83.3% after 2000 cycles. The present study demonstrates that the BP/RP hybrid has potential for application as an electrode with high performances in electrochemical energy-storage devices.

Graphical abstract: A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors

Article information

Article type
Paper
Submitted
14 Jan 2017
Accepted
02 Mar 2017
First published
02 Mar 2017

J. Mater. Chem. A, 2017,5, 6581-6588

A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors

X. Chen, G. Xu, X. Ren, Z. Li, X. Qi, K. Huang, H. Zhang, Z. Huang and J. Zhong, J. Mater. Chem. A, 2017, 5, 6581 DOI: 10.1039/C7TA00455A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements