Jump to main content
Jump to site search

Issue 23, 2017
Previous Article Next Article

Supports matter: unraveling the role of charge transfer in the plasmonic catalytic activity of silver nanoparticles

Author affiliations

Abstract

The immobilization of plasmonic nanoparticles onto supports with suitable electronic properties represents an intuitive strategy for the modulation of nanoscale charge-transfer processes and thus the optimization of plasmonic catalytic performances. Here, we report the investigation of the effect of two kinds of bi-dimensional (2D) supports, i.e., partially reduced graphene oxide (prGO) and ultrathin titanate nanosheets (TixO2), on the plasmonic catalytic performances of Ag nanoparticles (NPs). As prGO and TixO2 act as electron donor and acceptor materials, respectively, when combined with plasmonic nanoparticles under 633 nm excitation, their similar 2D morphologies enabled us to systematically probe and compare how charge transfer to and from Ag NPs affected their plasmonic catalytic activities. By employing the SPR-mediated oxidation of p-aminothiophenol (PATP) to p,p′-dimercaptoazobenzene (DMAB) as a model reaction, we found that the performances of the hybrids were superior relative to unsupported Ag NPs and that the PATP oxidation mechanism and conversion were dependent on the nature of the support. We also prepared the tri-component hybrid comprised of Ag NPs, prGO and TixO2 nanosheets (Ag/TixO2/prGO), which displayed a similar performance to Ag/prGO. In this material, a mechanism based on the cooperative effect of the supports was proposed, in which charge transfer from prGO to Ag NPs is intensified by the presence of TixO2 nanosheets. We believe that our results expand the understanding on the electronic behavior of complex plasmonic systems, which can allow the rational design of nanoparticle systems with improved performances towards plasmonically triggered or enhanced transformations.

Graphical abstract: Supports matter: unraveling the role of charge transfer in the plasmonic catalytic activity of silver nanoparticles

Back to tab navigation

Supplementary files

Article information


Submitted
23 Nov 2016
Accepted
19 Jan 2017
First published
20 Jan 2017

J. Mater. Chem. A, 2017,5, 11720-11729
Article type
Paper

Supports matter: unraveling the role of charge transfer in the plasmonic catalytic activity of silver nanoparticles

L. Papa, I. C. de Freitas, R. S. Geonmonond, C. B. de Aquino, J. C. Pieretti, S. H. Domingues, R. A. Ando and P. H. C. Camargo, J. Mater. Chem. A, 2017, 5, 11720
DOI: 10.1039/C6TA10122D

Social activity

Search articles by author

Spotlight

Advertisements