Issue 10, 2017

The origin of the enhanced photocatalytic activity of carbon nitride nanotubes: a first-principles study

Abstract

Graphitic carbon nitride (g-C3N4) nanotubes (CNNTs) have been reported experimentally to have higher photocatalytic activity than normal g-C3N4 nanosheets, but the underlying reason is still unclear. In this work, the structural, electronic, and chemical properties of single-walled heptazine-based g-C3N4 nanotubes with two types of chirality and various diameters, as well as a g-C3N4 nanosheet, are investigated by the first-principles calculations. Similar to the nanosheet, the nanotubes also have a corrugated porous structure. Unlike carbon nanotubes, the CNNTs show comparable stability to the nanosheet, which may be ascribed to the rolled geometry for releasing the repulsion between lone-pair electrons of nitrogen atoms. With increasing diameter, the energy gaps of the (m, 0) CNNTs are increasing, while those of the (n, n) CNNTs are decreasing. And they are generally smaller than the gap of the nanosheet. This result indicates that the CNNTs would be capable of more visible-light absorption than the g-C3N4 nanosheet, which is consistent with previous experimental results. The valence band maxima (VBM) of both (m, 0) and (n, n) CNNTs are lower in energy than the oxidation potential of O2/H2O and the VBM of the nanosheet, which indicates that the CNNTs would have better photooxidation capability than the nanosheet. The results reveal a reasonable mechanism of the enhanced photocatalytic activity of CNNTs, which may offer strategies for designing potentially efficient photocatalysts.

Graphical abstract: The origin of the enhanced photocatalytic activity of carbon nitride nanotubes: a first-principles study

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2016
Accepted
06 Feb 2017
First published
06 Feb 2017

J. Mater. Chem. A, 2017,5, 4827-4834

The origin of the enhanced photocatalytic activity of carbon nitride nanotubes: a first-principles study

Q. Gao, S. Hu, Y. Du and Z. Hu, J. Mater. Chem. A, 2017, 5, 4827 DOI: 10.1039/C6TA09747B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements