Issue 7, 2017

Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells

Abstract

Organic–inorganic hybrid lead halide perovskites (e.g., CH3NH3PbX3, X = Cl, Br, I) hold great promise in optoelectronic devices, e.g., solar cells. High-performance devices have been realized by controlling the perovskite surface morphology, grain size, and degree of crystallinity. However, the role of the components during film formation and crystallization remains mysterious. Here, we show the management of perovskite intermediates to construct perovskite films with uniform perovskite crystals and controlled surface morphology using methylammonium acetate (MAAc) to retard the reaction between PbI2 and MAI in the solution. The formation of MAPbI3 was allowed via the exchange of I anions from the neighboring MAI molecules to the perovskite intermediate phases replacing Ac anions. A highly efficient perovskite solar cell with a power conversion efficiency of 18.09% was achieved. The experimental and theoretical studies reveal that perovskite intermediates play an important role in facilitating homogeneous nucleation or modulating the crystallization kinetics. These results also provide important progress towards the understanding of perovskite intermediate phases for advancing the building of perovskite semiconductors.

Graphical abstract: Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells

Supplementary files

Article information

Article type
Communication
Submitted
04 Nov 2016
Accepted
19 Jan 2017
First published
20 Jan 2017

J. Mater. Chem. A, 2017,5, 3193-3202

Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells

Y. Xia, C. Ran, Y. Chen, Q. Li, N. Jiang, C. Li, Y. Pan, T. Li, J. Wang and W. Huang, J. Mater. Chem. A, 2017, 5, 3193 DOI: 10.1039/C6TA09554B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements