Issue 2, 2017

Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials

Abstract

The development of lead-free bulk ceramics with high recoverable energy density (Wrec) is of decisive importance for meeting the requirements of advanced pulsed power capacitors toward miniaturization and integration. However, the Wrec (<2 J cm−3) of lead-free bulk ceramics has long been limited by their low dielectric breakdown strength (DBS < 200 kV cm−1) and small saturation polarization (Ps). In this work, a strategy (compositions control the grain size of lead-free ceramics to submicron scale to increase the DBS, and the hybridization between the Bi 6p and O 2p orbitals enhances the Ps) was proposed to improve the Wrec of lead-free ceramics. (K0.5Na0.5)NbO3–Bi(Me2/3Nb1/3)O3 solid solutions (where Me2+ = Mg and Zn) were designed for achieving large Ps, and high DBS and Wrec. As an example, (1 − x)(K0.5Na0.5)NbO3xBi(Mg2/3Nb1/3)O3 (KNN–BMN) ceramics were prepared by using a conventional solid-state reaction process in this study. Large Ps (41 μC cm−2) and high DBS (300 kV cm−1) were obtained for 0.90KNN–0.10BMN ceramics, leading to large Wrec (4.08 J cm−3). The significantly enhanced Wrec is more than 2–3 times larger than that of other lead-free bulk ceramics. The findings in this study not only provide a design methodology for developing lead-free bulk ceramics with large Wrec but also could bring about the development of a series of KNN-based ceramics with significantly enhanced Wrec and DBS in the future. More importantly, this work opens a new research and application field (dielectric energy storage) for (K0.5Na0.5)NbO3-based ceramics.

Graphical abstract: Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials

Article information

Article type
Paper
Submitted
08 Sep 2016
Accepted
22 Oct 2016
First published
24 Oct 2016

J. Mater. Chem. A, 2017,5, 554-563

Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials

T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei and Z. Xu, J. Mater. Chem. A, 2017, 5, 554 DOI: 10.1039/C6TA07803F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements