Jump to main content
Jump to site search

Issue 21, 2017
Previous Article Next Article

Effect of body deformability on microswimming

Author affiliations


In this work we consider the following question: given a mechanical microswimming mechanism, does increased deformability of the swimmer body hinder or promote the motility of the swimmer? To answer this we run immersed-boundary-lattice-Boltzmann simulations of a microswimmer composed of deformable beads connected with springs. We find that the same deformations in the beads can result in different effects on the swimming velocity, namely an enhancement or a reduction, depending on the other parameters. To understand this we determine analytically the velocity of the swimmer, starting from the forces driving the motion and assuming that the deformations in the beads are known as functions of time and are much smaller than the beads themselves. We find that to the lowest order, only the driving frequency mode of the surface deformations contributes to the swimming velocity, and comparison to the simulations shows that both the velocity-promoting and velocity-hindering effects of bead deformability are reproduced correctly by the theory in the limit of small bead deformations. For the case of active deformations we show that there are critical values of the spring constant – which for a general swimmer corresponds to its main elastic degree of freedom – which decide whether the body deformability is beneficial for motion or not.

Graphical abstract: Effect of body deformability on microswimming

Back to tab navigation

Supplementary files

Publication details

The article was received on 23 Jan 2017, accepted on 01 May 2017 and first published on 03 May 2017

Article type: Paper
DOI: 10.1039/C7SM00181A
Citation: Soft Matter, 2017,13, 3984-3993

  •   Request permissions

    Effect of body deformability on microswimming

    J. Pande, L. Merchant, T. Krüger, J. Harting and A. Smith, Soft Matter, 2017, 13, 3984
    DOI: 10.1039/C7SM00181A

Search articles by author