Issue 2, 2017

Equation of state for random sphere packings with arbitrary adhesion and friction

Abstract

We systematically generate a large set of random micro-particle packings over a wide range of adhesion and friction by means of adhesive contact dynamics simulation. The ensemble of generated packings covers a range of volume fractions ϕ from 0.135 ± 0.007 to 0.639 ± 0.004, and of coordination numbers Z from 2.11 ± 0.03 to 6.40 ± 0.06. We determine ϕ and Z at four limits (random close packing, random loose packing, adhesive close packing, and adhesive loose packing), and find a universal equation of state ϕ(Z) to describe packings with arbitrary adhesion and friction. From a mechanical equilibrium analysis, we determine the critical friction coefficient μf,c: when the friction coefficient μf is below μf,c, particles' rearrangements are dominated by sliding, otherwise they are dominated by rolling. Because of this reason, both ϕ(μf) and Z(μf) change sharply across μf,c. Finally, we generalize the Maxwell counting argument to micro-particle packings, and show that the loosest packing, i.e., adhesive loose packing, satisfies the isostatic condition at Z = 2.

Graphical abstract: Equation of state for random sphere packings with arbitrary adhesion and friction

Article information

Article type
Paper
Submitted
29 Sep 2016
Accepted
29 Nov 2016
First published
29 Nov 2016

Soft Matter, 2017,13, 421-427

Equation of state for random sphere packings with arbitrary adhesion and friction

W. Liu, Y. Jin, S. Chen, H. A. Makse and S. Li, Soft Matter, 2017, 13, 421 DOI: 10.1039/C6SM02216B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements