Jump to main content
Jump to site search

Issue 5, 2017
Previous Article Next Article

Evaporated manganese films as a starting point for the preparation of thin-layer MnOx water-oxidation anodes

Author affiliations

Abstract

A novel method to prepare anodes for water electrolysis cells has been developed, which starts from layers of elemental manganese deposited by physical vapour deposition (PVD) on indium-doped tin oxide (ITO). Oxidation in dry air at 300 °C transforms this metallic Mn layer into a manganese(II)-rich MnOx coating (x = 1–1.3), which also contains a buried layer of an In–Sn alloy originating from reactions with the ITO support. The MnOx films are well connected to the underlying substrate and act as efficient catalysts for water-oxidation catalysis (WOC) at neutral pH. Detailed post-operando analyses using XRD, SEM, TEM and XAS revealed that the dense MnO/Mn3O4 film is virtually not affected by 2 h of electrochemical WOC at E ≈ +1.8 V vs. RHE, corresponding well to the observed good stability of catalytic currents, which is unusual for such thin layers of a MnOx catalyst. The current densities during electrolyses are so far low (i ≈ 50–100 μA cm−2 at pH 7), but optimization of the preparation process may allow for significant improvements. This new, rather easy, and adaptable preparation method for stable, thin-layer MnOx water-oxidation anodes could thus prove to be very useful for a variety of applications.

Graphical abstract: Evaporated manganese films as a starting point for the preparation of thin-layer MnOx water-oxidation anodes

Back to tab navigation

Supplementary files

Article information


Submitted
30 Mar 2017
Accepted
27 Apr 2017
First published
03 May 2017

Sustainable Energy Fuels, 2017,1, 1162-1170
Article type
Paper

Evaporated manganese films as a starting point for the preparation of thin-layer MnOx water-oxidation anodes

C. E. Frey, F. Kwok, D. Gonzáles-Flores, J. Ohms, K. A. Cooley, H. Dau, I. Zaharieva, T. N. Walter, H. Simchi, S. E. Mohney and P. Kurz, Sustainable Energy Fuels, 2017, 1, 1162
DOI: 10.1039/C7SE00172J

Social activity

Search articles by author

Spotlight

Advertisements