Jump to main content
Jump to site search

Issue 12, 2017
Previous Article Next Article

One-pass selective conversion of syngas to para-xylene

Author affiliations

Abstract

The finite petroleum resources and environmental crisis compel the development of non-petroleum carbon resources by chemical transformation routes. Syngas (CO + H2) is a crucial junction point that exclusively bridges the non-petroleum carbon resources and other basic chemicals like alcohols, alkane/alkenes, etc. However, the one-pass conversion of syngas to value-added aromatics, especially para-xylene, is still a big challenge. Here we presented a promising hybrid catalyst, named Cr/Zn–Zn/Z5@S1, to effectively realize the one-pass conversion of syngas to para-xylene. This hybrid catalyst exhibited enhanced activity on syngas conversion (CO conversion of 55.0%), good stability of catalyst lifetime and considerable selectivity of para-xylene (27.6% in the total products and 77.3% in xylene). The characterization and catalytic performance evaluation revealed that the well-designed core–shell Zn/Z5@S1 zeolite, as a vital part of this Cr/Zn–Zn/Z5@S1 hybrid catalyst, substantially contributed to its extreme performance for the para-xylene one-pass precise synthesis from syngas. The concerted combination of two components in this hybrid catalyst can effectively depress the formation of unwanted by-products and facilitate the oriented synthesis of para-xylene from syngas with unprecedented efficiency at the same time.

Graphical abstract: One-pass selective conversion of syngas to para-xylene

Back to tab navigation

Supplementary files

Article information


Submitted
06 Aug 2017
Accepted
14 Oct 2017
First published
16 Oct 2017

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2017,8, 7941-7946
Article type
Edge Article

One-pass selective conversion of syngas to para-xylene

P. Zhang, L. Tan, G. Yang and N. Tsubaki, Chem. Sci., 2017, 8, 7941
DOI: 10.1039/C7SC03427J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements