Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 78, 2017, Issue in Progress
Previous Article Next Article

A theoretical investigation of the two-photon absorption and fluorescent properties of coumarin-based derivatives for Pd2+ detection

Author affiliations

Abstract

Palladium is emitted due to automobile catalytic converters, and with rapid growth in the number of cars, palladium is thus a current threat to human health and the environment. Two-photon (TP) fluorescent probes are favorable and powerful molecular tools for palladium ion (Pd2+) detection due to localized excitation and reduced phototoxicity and photodamage. In the present study, a series of “turn-on” TP fluorescent dyes based on coumarin derivatives were designed for Pd2+ recognition. Our study revealed the origin of the peculiarly different fluorescence behaviors of the synthesized Pd2+ probe R1 and the product P′1 quantitatively and qualitatively from a theoretical perspective. Moreover, quantum-chemical calculations on electronic structures, one/two-photon absorption and fluorescence optical properties have first been carried out for these TP fluorescent chromophores using an ab initio approach. The calculated results demonstrate that chemical modifications of the coumarin core by the introduction of an electron-withdrawing group (–Cl or –CN) to its 4-position effectively increase the TP absorption cross-section per molecular weight more easily than extending the π-conjugated structure at the 3-position. In the present work, the product P′4, with a much smaller internal conversion rate (KIC = 1.28 × 106 s−1) than that of the Pd2+ probe R4 (KIC = 9.09 × 1011 s−1), possesses the largest TP absorption cross-section per molecular weight (3.91) and the longest fluorescence wavelength (590.3 nm) among all the studied molecules, which means it has better potential for Pd2+ detection. Consequently, we hope that this detailed study can provide guidance for the design and synthesis of new Pd2+ fluorescent probes.

Graphical abstract: A theoretical investigation of the two-photon absorption and fluorescent properties of coumarin-based derivatives for Pd2+ detection

Back to tab navigation

Supplementary files

Article information


Submitted
10 Aug 2017
Accepted
05 Oct 2017
First published
24 Oct 2017

This article is Open Access

RSC Adv., 2017,7, 49505-49517
Article type
Paper

A theoretical investigation of the two-photon absorption and fluorescent properties of coumarin-based derivatives for Pd2+ detection

C. Zhang, J. Guo, A. Ren and D. Wang, RSC Adv., 2017, 7, 49505
DOI: 10.1039/C7RA08832A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements