Issue 69, 2017, Issue in Progress

Large magnetocaloric effect and critical behavior in La0.7Ba0.2Ca0.1Mn1−xAlxO3

Abstract

The structural, magnetic and magnetocaloric properties of La0.7Ba0.2Ca0.1Mn1−xAlxO3 (0 ≤ x ≤ 0.1) perovskite manganite oxides have been investigated. X-ray diffraction (XRD) analysis using Rietveld refinement has shown that all of the samples under investigation crystallize with a rhombohedric structure in the R[3 with combining macron]c space group (N°167). Paramagnetic (PM) to ferromagnetic (FM) transitions have been observed in all of the synthesized samples. In addition, the maximum magnetic entropy change (ΔSmaxM) for the x = 0 sample was found to reach ∼5.8 J kg−1 K−1 under an applied magnetic field of 5 T, which is sufficient for potential applications in magnetic refrigeration. For the same applied magnetic field (μ0H = 5 T), the relative cooling power (RCP) value is found to be 167 J kg−1. The critical properties of manganites La0.7Ba0.2Ca0.1Mn1−xAlxO3 (0 ≤ x ≤ 0.1) are investigated through various techniques, such as modified Arrott plots, Kouvel–Fisher methods and critical isotherm analyses around the paramagnetic–ferromagnetic phase transition (Tc). The values of critical exponents, derived from magnetic data using the above methods, yield 0.246 ≤ β ≤ 0.253, 1.01 ≤ γ ≤ 1.12 and 4.76 ≤ δ ≤ 4.9 with a Tc of 300–350 K. The exponent values are close to those expected for tricritical mean field model ferromagnets with short-range dipole–dipole interactions.

Graphical abstract: Large magnetocaloric effect and critical behavior in La0.7Ba0.2Ca0.1Mn1−xAlxO3

Article information

Article type
Paper
Submitted
24 Jul 2017
Accepted
28 Aug 2017
First published
11 Sep 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 43590-43599

Large magnetocaloric effect and critical behavior in La0.7Ba0.2Ca0.1Mn1−xAlxO3

M. A. Zaidi, J. Dhahri, I. Zeydi, T. Alharbi and H. Belmabrouk, RSC Adv., 2017, 7, 43590 DOI: 10.1039/C7RA08162F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements