Jump to main content
Jump to site search

Issue 62, 2017, Issue in Progress
Previous Article Next Article

Surface chemistry of water-dispersed detonation nanodiamonds modified by atmospheric DC plasma afterglow

Author affiliations

Abstract

Surface modification of detonation nanodiamonds (DNDs) is a key factor for their application in diverse fields of science and technology. In this work we report on an easy and low-cost method for modifying water-dispersed DNDs by atmospheric DC plasma afterglow. DNDs were used in either as-received form (asrec-DND) or were oxidized by air-annealing at 450 °C for 30 minutes (O-DND). The influence of applied voltage and thus the type of discharge (corona discharge at 10 kV or transient spark discharge at 15 kV) and treatment duration (5 and 10 minutes) on the surface chemistry of DNDs was evaluated by Fourier Transform Infrared (FTIR) spectroscopy supported by X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS). Treated asrec-DNDs revealed stable positive ζ-potential (30 mV) during rearrangement of oxygen-containing moieties (changes in area below 1250 cm−1) as well as CHx groups, reflected in the enormous enhancement of the band at 1328 cm−1 and disappearance of the C[double bond, length as m-dash]C band at 1589 cm−1. On the other hand, the DC discharge afterglow had only minor impact on the surface chemistry of O-DND particles, as detected by FTIR and XPS, while a negative change of ζ-potential by up to 22 mV occurred. O-DND particles dried in vacuum also exhibited a noticeable catalytic effect towards hydrocarbons.

Graphical abstract: Surface chemistry of water-dispersed detonation nanodiamonds modified by atmospheric DC plasma afterglow

Back to tab navigation

Supplementary files

Article information


Submitted
12 Apr 2017
Accepted
02 Aug 2017
First published
09 Aug 2017

This article is Open Access

RSC Adv., 2017,7, 38973-38980
Article type
Paper

Surface chemistry of water-dispersed detonation nanodiamonds modified by atmospheric DC plasma afterglow

P. Stenclova, V. Celedova, A. Artemenko, V. Jirasek, J. Jira, B. Rezek and A. Kromka, RSC Adv., 2017, 7, 38973
DOI: 10.1039/C7RA04167E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements