Issue 31, 2017, Issue in Progress

High performance anion exchange ionomer for anion exchange membrane fuel cells

Abstract

The anion exchange ionomer incorporated into the electrodes of an anion exchange membrane fuel cell (AEMFC) enhances anion transport in the catalyst layer of the electrode, and thus improves performance and durability of the AEMFC. In this work, a novel ionomer based on a triblock copolymer with high conductivity and good durability is synthesized successfully. The spectroscopy (such as 1H-NMR, FT-IR) results of the ionomer indicate that the functional group is grafted onto the poly(styrene-ethylene/butylene-styrene) (SEBS) successfully and the OH conductivity of the ionomer is 30 mS cm−1 at 75 °C. Besides, quaternary ammonium SEBS (QASEBS) is used as the ionomer in a H2/O2 AEMFC and exhibits a significant durability of 500 h at a constant current density of 100 mA cm−2, moreover, the degradation rate of voltage is only 0.22 mV h−1 during the 500 h durability test. In addition, the peak power density of the membrane electrode assembly (MEA) with the QASEBS ionomer reaches 375 mW cm−2 at 50 °C, which is 3 times than that of the MEA using the commercially available Acta I2 ionomer (124 mW cm−2) for comparison.

Graphical abstract: High performance anion exchange ionomer for anion exchange membrane fuel cells

Article information

Article type
Paper
Submitted
17 Feb 2017
Accepted
24 Mar 2017
First published
30 Mar 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 19153-19161

High performance anion exchange ionomer for anion exchange membrane fuel cells

X. Gao, H. Yu, J. Jia, J. Hao, F. Xie, J. Chi, B. Qin, L. Fu, W. Song and Z. Shao, RSC Adv., 2017, 7, 19153 DOI: 10.1039/C7RA01980G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements