Issue 22, 2017, Issue in Progress

Micrometre-length continuous single-crystalline nm-thin Fe3C-nanowires with unusual 010 preferred orientation inside radial few-wall carbon nanotube structures: the key role of sulfur in viscous boundary layer CVS of ferrocene

Abstract

A key challenge in the fabrication of carbon nanotubes filled with ferromagnetic nanowires is the control of the number of nanotube-walls together with the nanowire continuity, composition and crystallinity. We report the serendipitous observation of novel radial carbon nanotube structures with few walls (2–5 walls) filled with nm-thin and many-micrometres long continuous single-crystalline Fe3C nanowires. These are the dominant reaction products in chemical vapour synthesis experiments involving the pyrolysis of ferrocene/sulfur mixtures in the viscous boundary layer between a rough surface and a laminar Ar flow. These nanowires are found with an unusual preferred 010 orientation along the nanotube capillary. The properties of these structures are investigated through the use of multiple techniques: SEM, TEM, HRTEM, EDX, STEM, XRD, Raman spectroscopy, FT-IR spectroscopy and VSM.

Graphical abstract: Micrometre-length continuous single-crystalline nm-thin Fe3C-nanowires with unusual 010 preferred orientation inside radial few-wall carbon nanotube structures: the key role of sulfur in viscous boundary layer CVS of ferrocene

Supplementary files

Article information

Article type
Paper
Submitted
07 Jan 2017
Accepted
15 Feb 2017
First published
27 Feb 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 13272-13280

Micrometre-length continuous single-crystalline nm-thin Fe3C-nanowires with unusual 010 preferred orientation inside radial few-wall carbon nanotube structures: the key role of sulfur in viscous boundary layer CVS of ferrocene

F. S. Boi, J. Wang, S. Ivaturi, X. Zhang, S. Wang, J. Wen, Y. He and G. Xiang, RSC Adv., 2017, 7, 13272 DOI: 10.1039/C7RA00240H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements