Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 21, 2017, Issue in Progress
Previous Article Next Article

Electronic and transport behavior of doped armchair silicene nanoribbons exhibiting negative differential resistance and its FET performance

Author affiliations

Abstract

In the present work, density functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) formalism is performed. The electronic properties (band structure and density of states) and transport properties (transmission spectrum and IV characteristics) of armchair silicene nanoribbons (ASiNRs) doped with various elements, such as Al, Ga, In, Tl, P, As, Sb and Bi, are investigated. The negative differential resistance is observed for each doped ASiNR. The most geometrically stable structure and the maximum peak current to valley current (Ip/Iv) ratio is observed in indium (In) doped ASiNRs. Finally, In doped ASiNRs are proposed for field effect transistor (ASiNR-FET) formation using the high dielectric constant value of lanthanum oxide (La2O3 = 29) at different applied gate voltages (−0.1 to 0.4 V). The In doped ASiNR device shows a negative differential resistance phenomenon, which can be controlled by an applied gate voltage. It is found that doping with In in the electrodes and scattering region provides a higher drain current, and higher Ion/Ioff and Ip/Iv ratios. Our results have great application in digital devices and memory devices, and high frequency applications for future nanoelectronics.

Graphical abstract: Electronic and transport behavior of doped armchair silicene nanoribbons exhibiting negative differential resistance and its FET performance

Back to tab navigation

Supplementary files

Article information


Submitted
21 Nov 2016
Accepted
26 Jan 2017
First published
23 Feb 2017

This article is Open Access

RSC Adv., 2017,7, 12783-12792
Article type
Paper

Electronic and transport behavior of doped armchair silicene nanoribbons exhibiting negative differential resistance and its FET performance

S. Singh, A. De Sarkar, B. Singh and I. Kaur, RSC Adv., 2017, 7, 12783
DOI: 10.1039/C6RA27101D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements