Issue 1, 2017

Novel efficient hole-transporting materials based on a 1,1′-bi-2-naphthol core for perovskite solar cells

Abstract

New star-shaped and efficient hole-transporting materials based on a 1,1′-bi-2-naphthol central core for perovskite solar cells are developed via facile synthesis. The 1,1′-bi-2-naphthol is first applied into the field of perovskite solar cells. The 2,7-carbazole-bis(4-methoxy-phenyl)-amine and 3,6-carbazole-bis(4-methoxy-phenyl)-amine are used as end groups. A reference compound based on a 3,3′-biphenyl core is prepared as well. The new materials have suitable highest occupied molecular orbital levels to match well with the valence band of CH3NH3PbI3, and they all exhibit a glass transition temperature higher than 160 °C. A device fabricated by hole-transporting materials based on 1,1′-bi-2-naphthol and 2,7-carbazole-bis(4-methoxy-phenyl)-amine in conjunction with a carbon counter electrode achieves the highest power conversion efficiency of 8.38% under the illumination of 100 mW cm−2, which is comparable to that fabricated by commercial spiro-OMeTAD (8.73%). Dark current, IPCE and IMVS measurements are also discussed. The introduction of 2,7-carbazole-bis(4-methoxy-phenyl)-amine onto the 1,1′-bi-2-naphthol central core tends to enhance Jsc of a device, and 3,6-carbazole-bis(4-methoxy-phenyl)-amine improves Voc. This work provides a new series of hole-transporting materials to fabricate economic and efficient perovskite solar cells.

Graphical abstract: Novel efficient hole-transporting materials based on a 1,1′-bi-2-naphthol core for perovskite solar cells

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2016
Accepted
18 Nov 2016
First published
03 Jan 2017
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2017,7, 482-492

Novel efficient hole-transporting materials based on a 1,1′-bi-2-naphthol core for perovskite solar cells

W. Qiao, Y. Chen, F. Li, X. Zong, Z. Sun, M. Liang and S. Xue, RSC Adv., 2017, 7, 482 DOI: 10.1039/C6RA25606F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements