Issue 35, 2017

High resolution mass spectrometric access to nitroxide containing polymers

Abstract

We introduce a mass spectrometric access route to nitroxide containing polymers via high resolution electrospray ionization mass spectrometry (HR ESI MS), a polymer class that is – due to the presence of unpaired spins – highly challenging to analyze via NMR techniques. The nitroxide content within the polymer chain structure was varied between 11.3 and 29.1 mol% in a statistical copolymer consisting of styrene-stat-4-(chloromethyl)styrene (p(S-stat-CMS), 4800 ≥ Mn/g mol−1 ≥ 11 100), where 4-carboxy-2,2,6,6-tetramethylpiperidine 1-oxyl (4-carboxy-TEMPO) units were attached by post-polymerization modification. By carefully evaluating the isotopic pattern of the nitroxide containing polymers, we demonstrate that the persistent nitroxyl radical retains its structural integrity during the soft ionization process employing spray currents up to 4.3 keV and in-source collision induced dissociation energies up to 30 eV using chloride attachment technology in negative ion mode. Interestingly, high-molecular weight gas-phase aggregates are identified with increasing amounts of nitroxide side-chain functionalization. To further exemplify the power of the introduced mass spectrometric protocol, a well-defined styrene based polymer was synthesized via atom transfer radical polymerization (ATRP, Mn = 5600 g mol−1, Đ = 1.05) containing functional groups, i.e. a terminal cyanuric acid unit and Hamilton Wedge moiety as well as a free nitroxide in the penultimate position to the Hamilton wedge. The intact persistent nitroxide radical at the chain end was unambiguously identified by its isotopic pattern in a highly defined polymer structure.

Graphical abstract: High resolution mass spectrometric access to nitroxide containing polymers

Supplementary files

Article information

Article type
Communication
Submitted
04 Aug 2017
Accepted
19 Aug 2017
First published
21 Aug 2017

Polym. Chem., 2017,8, 5269-5274

High resolution mass spectrometric access to nitroxide containing polymers

T. S. Fischer, J. Steinkoenig, H. Woehlk, J. P. Blinco, K. Fairfull-Smith and C. Barner-Kowollik, Polym. Chem., 2017, 8, 5269 DOI: 10.1039/C7PY01316G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements