Issue 20, 2017

Thermo conductive carbon nanotube-framed membranes for skin heat signal-responsive transdermal drug delivery

Abstract

Smart carbon nanotube (CNT)-framed (SCNF) membranes were prepared by self-assembly of highly thermo conductive CNT molecules hybridized with chitosan (Chit) in a core–shell structure and then by chemical integration of a temperature-responsive copolymer, poly(NIPAAm-co-BVIm) (or pNIBIm), as an additional outer shell. CNT, Chit, and pNIBIm components used in the SCNF membranes function as a thermally conductive CNT-framework, a biocompatible glue to stick the CNT building blocks together, and a temperature-responsive copolymer, respectively. The SCNF membranes with different Chit/CNT ratios and an almost constant pNIBIm concentration (Chit-CNT25-pNIBIm, Chit-CNT50-pNIBIm and Chit-CNT75-pNIBIm) had a three-dimensional interwoven porous nanostructure. Scanning electron microscopy clearly showed the temperature-responsive swelling and deswelling characteristics of the triple core–shell structured CNT-frames. Temperature-dependent bovine serum albumin (BSA)-loading and -release profiles were obtained at 4 °C, 25 °C, 36.5 °C, and 40 °C. The SCNF membranes, especially the Chit-CNT50-pNIBIm hybrid membrane, showed a markedly high loading capacity of 9.7 mg per mg of membrane at 4 °C. The membrane also showed a temperature-dependent BSA-release characteristic (0.92 mg per mg of membrane at 36.5 °C and 3.41 mg per mg of membrane at 40 °C). The SCNF membranes showing highly effective drug-loading/-releasing characteristics could be potentially used as a skin heat signal-responsive patch type transdermal drug delivery (PTDD) system in the medicinal field.

Graphical abstract: Thermo conductive carbon nanotube-framed membranes for skin heat signal-responsive transdermal drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
05 Apr 2017
Accepted
19 Apr 2017
First published
19 Apr 2017

Polym. Chem., 2017,8, 3154-3163

Thermo conductive carbon nanotube-framed membranes for skin heat signal-responsive transdermal drug delivery

J. Kang, H. Kim and U. S. Shin, Polym. Chem., 2017, 8, 3154 DOI: 10.1039/C7PY00570A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements