Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 46, 2017
Previous Article Next Article

Differential array sensing for cancer cell classification and novelty detection

Author affiliations

Abstract

A series of semi-specific peptides reported in the literature to bind various epitopes on cell surfaces were used in a differential sensing array to pattern cell line identity. The peptides were conjugated to thiazole orange to act as both a fluorescence reporter and a DNA intercalator. Fluorescence data for the peptides exposed to cells, with and without exogenous double stranded DNA (dsDNA), led to chemometric fingerprints for eight cancer cell lines. In contrast to the use of structures meant to act in completely non-specific ways, the use of a limited level of specificity generated linear discriminant score plots with high dimensionality, i.e. several principle components carrying significant variance. The arrays were found to correctly classify the cell lines from 60% to 100% depending upon the cell line. Due to the high dimensionality score plots, the identification of cell lines that were not part of the training set was examined. Support vector machines were used as a novelty detection routine and showed that a cancer line not part of the original training set could be correctly identified as being novel.

Graphical abstract: Differential array sensing for cancer cell classification and novelty detection

Back to tab navigation

Supplementary files

Article information


Submitted
30 Aug 2017
Accepted
02 Nov 2017
First published
15 Nov 2017

Org. Biomol. Chem., 2017,15, 9866-9874
Article type
Paper

Differential array sensing for cancer cell classification and novelty detection

A. M. Gade, M. K. Meadows, A. D. Ellington and E. V. Anslyn, Org. Biomol. Chem., 2017, 15, 9866
DOI: 10.1039/C7OB02174G

Social activity

Search articles by author

Spotlight

Advertisements