Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 3, 2017
Previous Article Next Article

An efficient approach to trans-4-hydroxy-5-substituted 2-pyrrolidinones through a stereoselective tandem Barbier process: divergent syntheses of (3R,4S)-statines, (+)-preussin and (−)-hapalosin

Author affiliations

Abstract

A diastereoselective approach to trans-4-hydroxy-5-substituted 2-pyrrolidinones 1 (P1 = TBS, P2 = H) has been developed through a stereoselective tandem Barbier process of (R,SRS)-8 with alkyl and aryl bromide. The stereochemistry at the C-5 stereogenic center of the trans-4-hydroxy-5-substituted 2-pyrrolidinones was solely controlled by α-alkoxy substitution. This effective approach was successfully used to prepare a variety of substituted (3R,4S)-statines 2. In addition, two bioactive natural products of (+)-preussin 4 and hapalosin 5 were effectively synthesized through this stereoselective tandem Barbier process.

Graphical abstract: An efficient approach to trans-4-hydroxy-5-substituted 2-pyrrolidinones through a stereoselective tandem Barbier process: divergent syntheses of (3R,4S)-statines, (+)-preussin and (−)-hapalosin

Back to tab navigation

Supplementary files

Article information


Submitted
18 Nov 2016
Accepted
08 Dec 2016
First published
08 Dec 2016

Org. Biomol. Chem., 2017,15, 649-661
Article type
Paper

An efficient approach to trans-4-hydroxy-5-substituted 2-pyrrolidinones through a stereoselective tandem Barbier process: divergent syntheses of (3R,4S)-statines, (+)-preussin and (−)-hapalosin

C. Si, L. Shao, Z. Mao, W. Zhou and B. Wei, Org. Biomol. Chem., 2017, 15, 649
DOI: 10.1039/C6OB02523D

Social activity

Search articles by author

Spotlight

Advertisements