Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 47, 2017
Previous Article Next Article

Gas molecule sensing of van der Waals tunnel field effect transistors

Author affiliations

Abstract

van der Waals (vdW) heterostructures with two-dimensional (2D) crystals such as graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDCs) allow us to demonstrate atomically thin field-effect transistors (FETs), photodetectors (PDs) and photovoltaic devices capable of higher performance and greater stability levels than conventional devices. Although there have been studies of gas molecule sensing with 2D crystal channels, vdW heterostructures based on 2D crystals have not been employed thus far. Here, utilizing graphene/WS2/graphene (G/WS2/G) vdW heterostructure tunnel FETs, we demonstrate the rectification behavior of the sensitivity signal by tuning the WS2 potential barriers as a function of the gas molecule concentration and devise a fingerprint map of the sensitivity variation corresponding to an individual ratio of two different molecules in a gas mixture. Because the separation of different gas molecule concentrations from gas mixtures is in high demand in the gas-sensing research field, this result will greatly assist in the progress on selective gas sensing.

Graphical abstract: Gas molecule sensing of van der Waals tunnel field effect transistors

Back to tab navigation

Supplementary files

Article information


Submitted
03 Aug 2017
Accepted
15 Oct 2017
First published
17 Oct 2017

Nanoscale, 2017,9, 18644-18650
Article type
Paper

Gas molecule sensing of van der Waals tunnel field effect transistors

H. K. Choi, J. Park, N. Myoung, H. Kim, J. S. Choi, Y. K. Choi, C. Hwang, J. T. Kim, S. Park, Y. Yi, S. K. Chang, H. C. Park, C. Hwang, C. Choi and Y. Yu, Nanoscale, 2017, 9, 18644
DOI: 10.1039/C7NR05712A

Social activity

Search articles by author

Spotlight

Advertisements