Jump to main content
Jump to site search

Issue 42, 2017
Previous Article Next Article

Electronic properties of single-layer tungsten disulfide on epitaxial graphene on silicon carbide

Author affiliations

Abstract

This work reports an electronic and micro-structural study of an appealing system for optoelectronics: tungsten disulfide (WS2) on epitaxial graphene (EG) on SiC(0001). The WS2 is grown via chemical vapor deposition (CVD) onto the EG. Low-energy electron diffraction (LEED) measurements assign the zero-degree orientation as the preferential azimuthal alignment for WS2/EG. The valence-band (VB) structure emerging from this alignment is investigated by means of photoelectron spectroscopy measurements, with both high space and energy resolution. We find that the spin–orbit splitting of monolayer WS2 on graphene is of 462 meV, larger than what is reported to date for other substrates. We determine the value of the work function for the WS2/EG to be 4.5 ± 0.1 eV. A large shift of the WS2 VB maximum is observed as well, due to the lowering of the WS2 work function caused by the donor-like interfacial states of EG. Density functional theory (DFT) calculations carried out on a coincidence supercell confirm the experimental band structure to an excellent degree. X-ray photoemission electron microscopy (XPEEM) measurements performed on single WS2 crystals confirm the van der Waals nature of the interface coupling between the two layers. In virtue of its band alignment and large spin–orbit splitting, this system gains strong appeal for optical spin-injection experiments and opto-spintronic applications in general.

Graphical abstract: Electronic properties of single-layer tungsten disulfide on epitaxial graphene on silicon carbide

Back to tab navigation

Supplementary files

Article information


Submitted
26 Jul 2017
Accepted
18 Sep 2017
First published
23 Oct 2017

This article is Open Access

Nanoscale, 2017,9, 16412-16419
Article type
Paper

Electronic properties of single-layer tungsten disulfide on epitaxial graphene on silicon carbide

S. Forti, A. Rossi, H. Büch, T. Cavallucci, F. Bisio, A. Sala, T. O. Menteş, A. Locatelli, M. Magnozzi, M. Canepa, K. Müller, S. Link, U. Starke, V. Tozzini and C. Coletti, Nanoscale, 2017, 9, 16412
DOI: 10.1039/C7NR05495E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements