Issue 37, 2017

A low-cost, large field-of-view scanning ion conductance microscope for studying nanoparticle–cell membrane interactions

Abstract

Nanoparticles have the potential to become versatile tools in the medical and life sciences. One potential application is delivering drugs or other compounds to the cell cytoplasm, which requires the nanoparticles to bind to or cross the cell membrane. However, there are only a few tools available which allow studying the interaction of nanoparticles and the cell membrane of living cells in a physiological environment. Currently, the tool which least biases living cells is Scanning Ion Conductance Microscopy (SICM). Specialized SICMs allow imaging at high resolution, however, they are cost intensive, particularly when providing a large field-of-view. In contrast, less cost intensive SICMs which provide a large field-of-view do not allow imaging at high resolutions. We have developed a SICM setup consisting of a compact three-axis piezo system and an additional fast shear-force piezo actor. This combination allows imaging fields-of-view of up to 80 μm × 80 μm, recording sections of living cells with a temporal resolution in the range of minutes as well as imaging with a spatial resolution of below 70 nm. Using our SICM we found that the cell membrane of HeLa cells treated with carboxylated latex nanoparticles was significantly more convoluted compared to control cells. The SICM setup we introduce here combines high resolution imaging with a large field-of-view at low costs. Our setup only requires a mounting adapter to extend existing inverted light microscopes, thus it could be a valuable and cost effective tool for researchers in all fields of the medical and life sciences performing investigations at the nanometer scale.

Graphical abstract: A low-cost, large field-of-view scanning ion conductance microscope for studying nanoparticle–cell membrane interactions

Article information

Article type
Paper
Submitted
15 Jun 2017
Accepted
07 Sep 2017
First published
08 Sep 2017

Nanoscale, 2017,9, 14172-14183

A low-cost, large field-of-view scanning ion conductance microscope for studying nanoparticle–cell membrane interactions

A. Gesper, P. Hagemann and P. Happel, Nanoscale, 2017, 9, 14172 DOI: 10.1039/C7NR04306F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements