Polyaniline-loaded γ-polyglutamic acid nanogels as a platform for photoacoustic imaging-guided tumor photothermal therapy†
Abstract
We report the facile synthesis of polyaniline (PANI)-loaded γ-polyglutamic acid (γ-PGA) nanogels (NGs) for photoacoustic (PA) imaging-guided photothermal therapy (PTT) of tumors. In this work, γ-PGA NGs were first formed via a double emulsion approach, followed by crosslinking with cystamine dihydrochloride (Cys) via 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride coupling chemistry. The formed γ-PGA/Cys NGs were employed as a nanoreactor to load aniline monomers via an electrostatic interaction for subsequent in situ polymerization in the presence of ammonium persulfate. The resulting γ-PGA/Cys@PANI NGs were thoroughly characterized. It is shown that the γ-PGA/Cys@PANI NGs with an average size of 71.9 nm are dispersible in water, colloidally stable, and cytocompatible and hemocompatible in the concentration range studied. The strong near-infrared (NIR) absorbance renders the NGs with good PA imaging contrast enhancement and photothermal conversion properties. With these excellent properties and biocompatibility, the developed γ-PGA/Cys@PANI NGs are able to be used for PA imaging-guided PTT of cancer cells in vitro and a xenografted tumor model in vivo. This unique theranostic nanoplatform may be further loaded with other imaging or therapeutic elements, or modified with targeting ligands, thereby providing a ubiquitous platform for multimode imaging and combinational therapy of different biosystems.