Issue 32, 2017

Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures

Abstract

Graphene has been integrated in many heterogeneous structures in order to take advantage of its superior mechanical properties. However, the complex mechanical response of heterogeneous films incorporating graphene is not well understood. Here, we studied the mechanical behavior of atomic layer deposition (ALD) synthesized TiO2/graphene, as a representative building block of a typical composite, to understand the mechanical behavior of heterostructures using an experiment-computational approach. The inclusion of graphene was found to significantly enhance the Young's modulus of TiO2/graphene hetero-films for films below a critical thickness of 3 nm, beyond which the Young's modulus approaches that of pure TiO2 film. A rule-of-mixtures was found to reasonably estimate the modulus of the TiO2/graphene hetero-film. Experimentally, these hetero-films were observed to fail via brittle fracture. Complimentary density functional theory and finite element modeling demonstrates strong adhesion at the graphene TiO2 interface and that graphene serves as a reinforcement, providing the hetero-film with an ability to sustain significantly high stresses at the point of failure initiation. The results and methodology described herein can contribute to the rational design of strong and reliable ultrathin hetero-films for versatile applications.

Graphical abstract: Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures

Supplementary files

Article information

Article type
Paper
Submitted
28 Apr 2017
Accepted
24 Jul 2017
First published
26 Jul 2017

Nanoscale, 2017,9, 11678-11684

Role of graphene in enhancing the mechanical properties of TiO2/graphene heterostructures

C. Cao, S. Mukherjee, J. Liu, B. Wang, M. Amirmaleki, Z. Lu, J. Y. Howe, D. Perovic, X. Sun, C. V. Singh, Y. Sun and T. Filleter, Nanoscale, 2017, 9, 11678 DOI: 10.1039/C7NR03049E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements