Issue 29, 2017

Fabrication of nanoporous graphene/polymer composite membranes

Abstract

Graphene is currently investigated as a promising membrane material in which selective pores can be created depending on the requirements of the application. However, to handle large-area nanoporous graphene a stable support material is needed. Here, we report on composite membranes consisting of large-area single layer nanoporous graphene supported by a porous polymer. The fabrication is based on ion-track nanotechnology with swift heavy ions directly creating atomic pores in the graphene lattice and damaged tracks in the polymer support. Subsequent chemical etching converts the latent ion tracks in the supporting polymer foil, here polyethylene terephthalate (PET), into open microchannels while the perfectly aligned pores in the graphene top layer remain unaffected. To avoid unintentional damage creation and delamination of the graphene layer from the substrate, the graphene is encapsulated by a protecting poly(methyl methacrylate) (PMMA) layer. By this procedure a stable composite membrane is obtained consisting of nanoporous graphene (coverage close to 100%) suspended across selfaligned track-etched microchannels in a polymer support film. Our method presents a facile way to create high quality suspended graphene of tunable pore size supported on a flexible porous polymeric support, thus enabling the development of membranes for fast and selective ultrafiltration separation processes.

Graphical abstract: Fabrication of nanoporous graphene/polymer composite membranes

Supplementary files

Article information

Article type
Paper
Submitted
18 Apr 2017
Accepted
01 Jul 2017
First published
04 Jul 2017

Nanoscale, 2017,9, 10487-10493

Fabrication of nanoporous graphene/polymer composite membranes

L. Madauß, J. Schumacher, M. Ghosh, O. Ochedowski, J. Meyer, H. Lebius, B. Ban-d'Etat, M. E. Toimil-Molares, C. Trautmann, R. G. H. Lammertink, M. Ulbricht and M. Schleberger, Nanoscale, 2017, 9, 10487 DOI: 10.1039/C7NR02755A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements