Issue 27, 2017

Reinforcement of natural rubber latex using lignocellulosic nanofibers isolated from spinifex grass

Abstract

Reinforcement of natural rubber (NR) using nanofillers often results in an enhancement of the tensile strength, but at the expense of elongation at break and toughness. In this study, with the objective of strengthening NR without compromising its compliance, we investigate the reinforcement efficiency of a series of cellulose nanofibers (CNF) with variations in residual hemicellulose, lignin and therefore surface chemistry. Different types of high aspect ratio CNF isolated from Triodia pungens (T. pungens), an Australian arid grass commonly known as spinifex, were added at 0.1–2 wt% loadings into a pre-vulcanized NR latex. CNF/NR nanocomposites then were benchmarked against NR nanocomposites incorporating a well-known wood-derived CNF. It was found that the presence of residual lignin and hemicellulose, and the pretreatment with a deep eutectic solvent, a mixture of choline chloride and urea (CCU), could increase the compatibility of CNF with the NR matrix, while still enabling stability and handling of the colloidal latex mixture. Incorporation of 0.5 and 0.1 wt% of the sodium hydroxide treated CNF and choline chloride/urea treated CNF into the NR latex showed respectively 11 and 17% enhancement in tensile stress, and importantly without compromising viscoelastic properties; while addition of 0.1 wt% wood-derived CNF resulted in 18% decrease in both tensile stress and strain coupled with more pronounced latex stiffening.

Graphical abstract: Reinforcement of natural rubber latex using lignocellulosic nanofibers isolated from spinifex grass

Supplementary files

Article information

Article type
Paper
Submitted
13 Apr 2017
Accepted
15 Jun 2017
First published
16 Jun 2017

Nanoscale, 2017,9, 9510-9519

Reinforcement of natural rubber latex using lignocellulosic nanofibers isolated from spinifex grass

A. Hosseinmardi, P. K. Annamalai, L. Wang, D. Martin and N. Amiralian, Nanoscale, 2017, 9, 9510 DOI: 10.1039/C7NR02632C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements